
Finding Surface Normals From Voxels

CARLOS EDUARDO VAISMAN MUNIZ, ESTEBAN WALTER GONZALEZ CLUA (ADVISOR)

Instituto de Computação - Universidade Federal Fluminense, R. Passo Da Pátria, 156, 24210-240 Niterói, RJ, Brasil
cmuniz@superig.com.br, esteban@ic.uff.br

Abstract
Volumetric rendering is a way to represent 3D models on
devices with a low use of 3D resources. It allows the use
of high poly models, quick collision detection and
rasterization operations, making them interesting for the
games that are being created for the current generation of
mobiles and pocket pcs that cannot handle OpenGL
operations with a fast frame rate. However, the lack of
knowledge of the shape of the object has proven to be a
problem to preprocess its lighting. This short paper
presents an heuristic that finds an approximation of the
direction of normal vector of a voxel without the previous
knowledge of the mesh, vertexes, edges and surfaces of
the volumetric model where it belongs.

1. Introduction
Volumetric rendering is a technique used to visualize 3D
data in a 2D projection [1]. While it is mostly used on
medical applications, specially with 3D scanners, it has
also been used in games made for devices with low 3D
graphics resources, such as mobile phones.

The volumetric models used by these games are 3D
grids of pixels, where each of them, called voxel in this
article, may have at least one color, one unitary normal
vector and a density value. Voxel files uses more disk
space than normal geometry, since it stores all used
volumetric elements, even when compressed. In order to
optimize the disk space, the number of distinct colors and
normal vectors might be limited, so a game can hold more
models using less space.

While most of the volumetric models are created with
3D modeling programs, voxel editors are useful by
featuring a reliable and intuitive way to texturize the
model and preview it. They allow users to paint the object
pixel by pixel, which is not good to create very complex
shapes, specially when the surface normals also need to be
painted. Due to lack of voxel editors available and interest
on creating them, researches on automatic ways to detect
the normals from voxels are rare and are mostly focus on
quick ways to preprocess and render the volume, like High
Quality Lighting and Efficient Pre-Integration for Volume

Rendering [2]. Other works may have simple calculation
of the normals as a mean to achieve their objectives, such
as Cline et al. [3], where the diagonal neighbor voxels are
ignored. Hux et al [4] is able to extract the surface where a
voxel belongs to, but it's not clear how normals would be
calculated from its results.

The algorithm developed for this work calculates the
normal vector of each of voxels by only knowing if a
certain pixel is solid or not, with the purpose of making a
automatic detection of normals for a voxel editor.

The section 2 explains the algorithm and its
implementation. The section 3 shows the results and
compare them with the 3D modeler exporters. It also
analyzes the limitations of the technique and the voxel file
format that was used. Finally, section 4 has the final
considerations and section 5 presents the future works.

2. The algorithm

2.1 Overview
The concept behind the algorithm consists in to getting the
surface around the voxel that is being analyzed and build a
tangent plane. Then, it extracts the normal direction from
this plane, as showed on figure 1.

The technique starts by detecting which of the voxels
belongs to the surface of the model. After that stage, for
each voxel, the surface around it is determined by a
spherical region centered in the pixel, that is being
analyzed at the moment, with a ray determined by the
programmer. It computes the derivative of this region in
order to determine a plane that is tangent to this surface. It
provide us two normal vectors with the opposite
directions. Then, it uses a ray casting to compare the
presence of material on both directions and choose the one
where that matches the direction of the reflection of the
light..

Figure 1 Normals from a tangent plane of a surface (red).

mailto:cmuniz@superig.com.br
mailto:cmuniz@superig.com.br
mailto:cmuniz@superig.com.br

2.2 Finding the surfaces
In order to detect the voxels that are part of the surface, it
finds what is inside the object, by using a 3D flood and
fill. It can be done by placing the volume grid inside a
bigger 3D grid and starting to paint from the position
(0,0,0) of this new grid. What remains unpainted is part of
the volume of the object. Then, each voxel is scanned and
the ones that are neighbor to external elements are part of
the surface of the volume. Note that the voxels that are
inside the volume and not part of the surface must be
marked for the ray casting procedure detailed in the
section 2.5.

2.3 Finding the tangent plane
From now on, each volume element is analyzed separately.
We cannot find a plane that is tangent to a point, since it
could be any plane, but we can find one that can be
tangent to a surface composed with the voxels that are
around the one being analyzed. This algorithm simplifies
the process of finding an ideal surface around this point,
by picking the neighbor ones in a sphere, where its ray
(range) is determined by the programmer. This may have a
minor cost in the final quality of the result, but it speeds
up the algorithm considerably.

In order to find a tangent plane of a surface, the
algorithm needs to find the two dimensions with the
highest variations from it. These two dimensions are
“locked” and the last dimension will determine the
inclination of the plane. This variation can be found by
computing the derivative of the function of this surface in
the 3 axis and picking the 2 highest ones. The problem
here is that there is no way to know the function of this
surface, however the farther a voxel is from the center of a
surface, the lower its effect in the normal vector of the
center. Assuming this property as function f, (Xp,Yp,Zp)
as the coordinates of a variable point of the surface and
(Xc,Yc,Zc) as the coordinates of the center of the surface,
we have the following function:

 After computing the three partial derivatives of the
function above, we have the following equations:

Since the sum of the derivatives of each point P is the
derivative of the sum of all points [5], the variation of the
surface to its center can be found by using the sum of the
partial derivatives (2,3 and 4) applied for its all points.

Each one of the four vertices of the tangent plane will
be based on the two “locked” dimensions from the
previous procedure. Splitting the surface in 4 quarters,
based on these two dimensions where the points are in the
middle may belong to more than one quarter. The
coordinates of each vertex of this plane can be found by
using the same derivative computing process, but it will
result only the sum of the points located in the quarter
where it belongs.

2.4 Finding the right normal.
The tangent plane may have four vertexes, but only 3 are
needed to calculate the normal vector by making the cross
product of them [6]. The normalized result of this cross
product gives one normal vector and, inverting all signs, it
is possible to get another one, which can also be the
answer, as seen in figure 2.

Figure 2 Tangent plane can have two normals.

In order to decide which of the two normals applies
to the plane, the algorithm casts two rays from the center
of the voxel, one in the direction of each normal,
computing the amount of solid volumetric elements
intersecting among the path. The direction with less solid
materials is the final result.

2.5 Optimizing the algorithm
The partial derivative functions in 2.3 can be done only
once and their values can be cached in a 3D grid. The
values of the grid can be multiplied by the presence of a
solid voxel - represented as 1 - or lack of it, which would
be represented with 0.

Some of the processes described above can be multi-
threaded, which would considerably speed up the
execution of the algorithm on processors with multiple
cores.

Normals 2
(Opposite)

Normals 1

(1)

(4)

(3)

(2)

3. Results

3.1 The tool
The algorithm was tested on Voxel Section Editor III 1.37
[7]. This program was selected because it is open source,
it is able to read the voxel file format from Westwood
Studios [8], featured in Command & Conquer: Red Alert 2
and Command & Conquer: Tiberian Sun used in this
work. It also has a 3D view that can real time preview
these models with a free camera.

Both games mentioned above use a 256 color palette
and a limited set of normal vectors, 36 for Tiberian Sun
and 244 for Red Alert 2. Each model is composed of
sections, where each has its own 3D grid with one
transformation matrix per frame, an axis aligned bounding
box for collision detection and scale settings. Each voxel
has one color and one normal vector and, in the editor, it is
either solid or empty, with no alpha channel which is why
each element of the volume can behaves like a single sided
face, since it reflects light to only one direction.

The program renders voxels in a primitive way, by
rendering cubes and giving to all its faces the normal and
color from the voxel. In order to verify the efficiency of
the algorithm, figure 3 shows the option to view only the
normals in shades of gray that tends to white when normal
points to the camera and black when it doesn't reach it.

Figure 3 Colors at the left side and normals at the right.

More than 30 models were tested. Many of them
were distributed by Westwood Studios, used for the
commercial game “Red Alert 2”. Other models were taken
from Red Alert 2 fan sites. The models analyzed had a
minimum of 5000 filled voxels. The Kirov in figure 4 is
the most complex model tested with 35584.

Figure 4 Kirov in Red Alert 2 and in the VXLSE III

3.2 Model data loss and distortion
The algorithm is optimized to find only one surface
normal per face. It totally ignores the original geometry of
the model and the normal vector found for each voxel is
only based on its opaque neighborhood, which means that
each voxel is analyzed locally only. This results in a
distortion between the original models, obtained from
Westwood Studios, and the same models with normals
calculated by Voxel Section Editor III, specially when the
original 3D model had its normals affected by texture
mapping. This distortion is showed on figures 5.

 Figure 5 Kirov: Westwood and VXLSE III respectively.

Despite the limitations previously discussed, voxels done
with the voxel editor had acceptable results, as seen on
figure 6. On all models from the figures above, the range
of the neighborhood region is close to 3.54. Values lower
than 2 resulted on a great amount of noise. Values above 5
usually get smoother results than it should, with not so
much defined borders and, in some cases, there are some
additional distortions. The figure 7 shows the Kirov auto
normalized with ranges 1.69 and 5.2 respectively.

Figure 6 Models made with VXLSE III and auto normals
algorithm from this work.

Figure 7 A Kirov with a noised front at the left and a
smoother Kirov at the right side.

3.3 Other limitations of the presented models
The limit of only one normal per voxel prevents the
algorithm from finding boxes. 3D exporters bypass this
problem by choosing one of the normals of the faces
where the corner belongs, while this technique tends to
find the average of the normals of these faces.

There is no correct normal value for isolated voxels
or voxels that can reflect light to opposite directions.
However, unlike 3D exporters, the technique showed in
this article may not necessarily choose the same directions
for the voxels that belongs to the same wall that reflects
lights for two opposite directions.

Surfaces with discontinued functions will have their
results distorted, since the detection of the tangent plane
vertices, that uses the derivative computation, will fail. It
is not possible to compute derivatives of discontinued
functions [9]. This problem appears on some black dots
from the Kirov (figure 5) and some corners from the
Lybian demo truck (figure 6).

3.4 Complexity
The range is what most affects the complexity of this
algorithm. The operation with the highest complexity is
the calculation of the 4 vertexes of the tangent plane.
Assuming m as the range and n as the number of voxels,
the complexity of this procedure is O(m,n) = m³ x n.
During the tests, Kirov airship with range 3.54 took less
than 5 seconds, to execute while using range 100 took
over an hour.

4. Final Considerations
This heuristic may not reach perfect results due to the
discontinuity problems, but it achieves the objective of
finding high quality normals with a quick speed. Some of
the texturing effects lost in the voxel conversion process
can only be repainted by the user. Most of the errors are
hard to be noticed on low resolution, which makes voxels
normalized with this algorithm useful for games.

The source code of this work is available in the
version 1.37 of the Voxel Section Editor III or later [10].

5. Future Works
The only known way to fix the discontinuity issue is to
find all vertexes, connections and surfaces of the
volumetric model. However, doing this, the whole process
described at this article will change and the complexity of

the operation will increase considerably. We plan to
research a way to do this with the minimum cost possible.

Acknowledgments
Command & Conquer, Tiberian Sun, Red Alert 2,
Westwood Studios and the voxel format used in this
experience are property of Electronic Arts. While this
research may violate the end user license agreement of
these games, Electronic Arts do support modifications of
their games and the creation of modding tools by fans,
both for non commercial purposes.

References

[1] W. E. Lorensen, H. E. Cline, "Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm"; Computer Graphics; Siggraph '87
Conference Proceedings; Jul. 27-31, 1987; vol. 21,
No. 4; ACM Siggraph; pp. 163-169.

[2] E. B. Lum, B. Wilson, K. L. Ma, “High Quality
Lighting and Efficient Pre-Integration for Volume
Rendering”, In EUROGRAPHICS/IEEE Symposium
on Visualization (2004), pp. 25-34.

[3] H. E. Cline, S. Ludke, (2000) “Fast method of
creating 3D surfaces by stretching cubes”, retrieved
August 28th, 2007 from
http://www.freepatentsonline.com/6115048.html

[4] W. A. Hux, (2005) “Generating Sirface Normals”,
retrieved August 28th, 2007 from
http://www.patentstorm.us/patents/6867773-
fulltext.html

[5] H. Anton, “Calculus: A New Horizon”, John Wiley &
Sons Inc 6 Sub edition (1998), 332--335.

[6] E. Azevedo and A. Conci, “Computação Gráfica -
Teoria E Prática”, Elsevier (2003), 266--267.

[7] Voxel Section Editor III (2007), “Project Perfect
Mod”, retrieved July 1st, 2007 from
http://www.ppmsite.com/index.php?go=vxlseinfo

[8] EoL and DMZ, (2000) “XCC Home Page by Olaf Van
der Spek”, retrieved July 1st, 2007 from
http://xhp.xwis.net/documents/VXL_Format.txt.

[9] H. Anton, “Calculus: A New Horizon”, John Wiley &
Sons Inc 6 Sub edition (1998), 342—345.

[10] Open Source Voxel Tools Subversion, “Project
Perfect Mod”, retrieved August 27th, 2007 from
http://svn.ppmsite.com/

http://www.freepatentsonline.com/6115048.html
http://www.freepatentsonline.com/6115048.html
http://www.freepatentsonline.com/6115048.html

	1.Introduction
	2.The algorithm
	3.Results
	4.Final Considerations
	5.Future Works
	Acknowledgments
	References

